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CAAEF, All Objectives
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Start o
April 1,2022 Core Activities

April 1, 2022 - March 31, 2027

Objective 1. Develop Authoritative Estimates Of Landscape-Scale
Density Of Wetland Coverage For Agricultural Landscapes
April 1, 2022 - March 31, 2025

Objective 2. Develop Authoritative Estimates For Rates Of OC Accumulation, GHG Fluxes To The
Atmosphere, And Carbon Transports Into (And Out Of) Wetlands
April 1, 2022 - October 15, 2026

Objective 3. Develop Robust Estimates Of Hydrological Process Controls On OC Accumulation And GHG
Fluxes From Wetlands
April 1, 2022 - March 31, 2027

Objective 4. Develop Robust Estimates Of The Synergies (And Conflicts) Of Wetlands As NBS For Carbon
Storage Versus Other Benefits
April 1, 2022 - March 31, 2027

Objective 5. Use The Authoritative And Robust Estimates Of OC Accumulation And
GHG Fluxes To Inform Policy And Practice Tools To Incentivize The Use Of Wetlands

As NBS For Multiple Benefits In Agricultural Landscapes
April 1, 2023 - March 31, 2027

12027
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Prairies
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April 1, 2022

2025 Finish
| March 31, 2025

Task 1. Conceptual socioeconomic model planning approach for Lake Winnipeg watershed

Task 2. Engagement with science teams in the development of
wetland inventory

Task 3. Analysis of primary drivers of wetland conversion

Task 4. Development of survey instrument on socioeconomic perspectives

Task 5. Development of socioeconomic model for wetland conversion

Task 6. Evaluation and assessment of policy instruments

Task 7. Development of model to assess leakage of wetlands

Task 8. Research Team




Great Lakes Project

Wetlands as Nature-Based Climate Solutions: A Socioeconomic
Analysis of the Great Lakes-St. Lawrence River Basin
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ing wetlands and estimating historical rates of land use
e GLSLRB




National Wetland Information Network

* Institutions participating in CAAF Wetlands
as Nature Based Climate Solutions project

Wetlands as Natural Solutions (Prairies)

* Universities added in Socioeconomic’Analysis
GLSLRB. (Great Lakes Project) ‘

Source: Statistics Canada, Agriculture Division, Remote Sensing and Geospatial Analysis l“**.i"
section, 2017. Agricultural Ecumene Boundary File - 2016. e
https://open.canada.ca/data/en/dataset/317bf695-b6e2-4b60-90a8-51cd3c3d3d64




Investigators (CAAF Project)




Investigators (Prairies Project)

Dr. Irena Creed Dr. Patrick Lloyd-Smith Dr. John Pattison-Williams




Investigators (Great Lakes Project)

Dr. Irena Creed Dr. Georgios Dr. Roy Brouwer Dr. Jie He Dr. Ben DeVries Dr. Genevieve Ali Dr. Lota Tamini
Arhonditsis




Wetland Assessments
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Great Lakes-St. Lawrence River Basin area*
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Source: Statistics Canada, Agriculture Division, Remote Sensing and Geospatial Analysis
section, 2017. Agricultural Ecumene Boundary File — 2016.
https://open.canada.ca/data/en/dataset/317bf695-b6e2-4b60-90a8-51cd3c3d3d64




Wetland Assessments

* Cross fertilization of
theories, methods, approaches

Area covered by:
CAAF Wetlands %s Nature Based Climate Solutions (green)

Great Lakes-St. Lawrence River Basin area*

Lake Winnipeg Watershed Area covered by the proposed second extension
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CAAF Wetlands as Nature Based Climate Solutions Project Nature Based Climate Solutions Project
led by Patrick Lloyd-Smi L led by
and John Pattison-Willia Roy Brouwer
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Source: Statistics Canada, Agriculture Division, Remote Sensing and Geospatial Analysis
section, 2017. Agricultural Ecumene Boundary File — 2016.
https://open.canada.ca/data/en/dataset/317bf695-b6e2-4b60-90a8-51cd3c3d3d64
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Agenda, May 1

. 8:30 — 9:00, Welcome

+9:00 - 9:30, Introductions

- 9:30 — 10:30, Breakout room (A, B)

. 10:30 — 10:45, Morning Break

. 10:45 - 12:00, Breakout rooms (A, B)
. 12:00 — 1:00, Lunch break

. 1:00 — 2:30, Breakout rooms (C, D)

. 2:30 — 2:45, Afternoon Break

. 2:45 — 3:30, Breakout rooms (C, D)

- 3:30 — 4:00, From Science to Impact
. 4:00 - 4:30, Final remarks
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GIS, remote sensing, mapping, and modeling Flux towers, measurements, and carbon cycling
Objectives: Objectives:

CAAF, Objectives 1, 3, 5.3. CAAEF, Objective 2

Great Lakes, Objectives 1, 2, 4.5.

Room leaders: Room leaders:

David Aldred, Ben DeVries Pascal Badiou, Matthew Bogard




Rose Fuchsia Room, Topic A

Topics:

GIS, remote sensing, mapping, and modeling

CAAF:
Ali Ameli

George Arhonditsis (Ratnajit Saha, Yoji Uno, Xin
Wey Wen)

Irena Creed (David Aldred, Forough Fendereski,
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Michael Dallosch, Pengfei Ren, Adan Auyeung)

Great Lakes:

Ben DeVries (Maciej Lizak, Alejandro Nieto,
Kathleen B.)
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Sara Knox
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Room A. Rose Fuchsia

Topics:

GIS, remote sensing, mapping, and modeling

Room B. Purple

Topics:

Flux towers, measurements, and carbon cycling

uestions:

How do we link our measurements and
modelling approaches across scales? (i.e. results
from soil/water incubations - Kayak sampling -
Eddy co-variance measurements on site and
across country - large scale modelling
approaches).

What information/knowledge do we gain and/or
lose during the upscaling? What gaps of
knowledge need to be filled to link the different
scales?

Discussions on sampling GHG concentrations in
water.
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GIS, remote sensing, mapping,
and modeling




ROOM A: GIS, remote sensing, mapping, and modeling

. Sheel Bansal

. David Aldred

. Forough Fendereski
. Eric Enanga

. Shizhou Ma

. Nayyer Mirnasl

. Ratnajit Saha

. Ben DeVries

. Genevieve Ali
. David Lobb




ROOM A: GIS, remote sensing, mapping, and modeling

. Sheel Bansal




Wetland Biogeochemistry:
Mechanisms, Models, Management, Methods (Web4M)

U.S. Geological Survey, Climate Research & Development Program
Northern Prairie Wildlife Research Center

Jamestown, North Dakota, USA

Sheel Bansal, Senior scientist

Brian Tangen, Junior scientist

Jacob Meier, Lead technician
Max Post van der Burg, Modeler

1. Mechanisms

7

2. Models 3. Management 4. Methods

I X e R ,Y“bj

. 2T Ay wer AN

Conservation Reerve Program Automation, Patents, Student led

Vegetation, hydrology, and soils Spatially explicit methane model




ROOM A: GIS, remote sensing, mapping, and modeling
. David Aldred




Objective 1, Task 2: Develop authoritative estimates of landscape-

scale density of wetland coverage for agricultural landscapes
Irena Creed, David Aldred

In Task 1 we compiled existing inventories in the Prairies and identified
limitations of having non-standardized approaches (different source data,
different dates, different specifications)

In Task 2 we are creating standardized inventories that span multiple years

Area to be mapped in Objective 2 of
Great Lakes-St. Lawrence River Basin

extension project
Area covered to date B

/

Statistics Canada, Agriculture Division, Remote Sensing and Geospatial Analysis section, 2017.
Agricultural Ecumene Boundary File — 2016. https://open.canada.ca/data/en/dataset/317bf695-
b6e2-4b60-90a8-51cd3c3d3d64




We tested multi-year (1 to 10 year) overlays of Landsat-based Dynamic Surface Water of Canada*
annual inundation maps with lakes and rivers removed for spatial accuracy and drainage loss

estimates in 30 areas where high resolution DUC inventories were available for comparison

Our testing resulted in 28-year (1993-2020) time series of annual wetland inventories based on 10-year
overlays

*Olthof I, Rainville T. 2022. Dynamic surface water maps of Canada from 1984 to 2019 Landsat satellite imagery. Remote Sensing of Environment 279: 113121.
https://doi.org/10.1016/j.rse.2022.113121




We are continuing to test different multi-year overlays using frequency of inundation thresholds

Together with Objective 2 of the Great Lakes-St. Lawrence River Basin extension project, we will also

test sub-pixel water fraction (SWF) methods* to improve wetland mapping

Pixel-based Landsat inundation Sub-pixel water fraction (SWF)
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*DeVries B, Huang C, Lang MW, Jones JW, Huang W, Creed IF, Carroll ML. 2017. Automated quantification of surface water inundation in wetlands using optical
satellite imagery. Remote Sensing 9(8): 807. https://doi.org/10.3390/rs9080807




Using these inventories and AAFC land cover maps, we generated estimates of number and area of

wetland conversions between 1970-1990, 1990-2005, and 2005-2020

These estimates will be updated this
summer with revised inventories

Conversion class numbers and areas
reported for 1,114 SLC polygons
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Standardized wetland inventories will be available to all project investigators and will directly support
Tasks 1.3, 1.4, 3.2, 3.3, 4.2, and 4.4 of the CAAF project and Objectives 1 and 2 of the Prairies Project,
and the methods will support Objectives 1 and 2 in the Great Lakes Project

Statistics Canada, Agriculture Division, Remote Sensing and Geospatial Analysis section, 2017.
Agricultural Ecumene Boundary File — 2016. https://open.canada.ca/data/en/dataset/317bf695-
b6e2-4b60-90a8-51cd3c3d3d64




ROOM A: GIS, remote sensing, mapping, and modeling

. Forough Fendereski




Objective 1: Tracking changes in wetlandscape properties in Lake Winnipeg Watershed
Forough Fendereski, Shizhou Ma, Sassan Mohammady, Christopher Spence, Charles Trick, Irena Creed

Wetlandscape properties—number, size,
and wetland-to-wetland connectivity —
affect ecosystem functions and services

Area covered

Jones JW. 2019. Improved automated detection of subpixel-
scale inundation—Revised dynamic surface water extent

(DSWE) partial surface water tests. Remote Sensing 11(4),
374. doi: 10.3390/rs11040374

Pekel JF, et al. 2016. High-resolution mapping of global
surface water and its long-term changes. Nature 540, 418-422.
doi: 10.1038/nature20584




We identified wetland “objects” from Landsat inundated areas and extracted

wetlandscape properties —number, size, and wetland-to-wetland connectivity — to
track their changes from 1984-2020

wetland-wetland connectivity

/ (loss of connectivity in dry year) Probability of inundation

""" .. (37 years)

0‘ Wetland shrinkage .
e, = S —— @ >80%

Bl 60-80%
Y 40-60%

Q ‘ 20-0%

O Nodes (based on 37 years)

L)
-
-

wetland loss in dry year ...+ Adryyear’s inundation

wetland loss in wet and dry years

Fendereski F, Ma S, Mohammady S, Spence C, Trick C, Creed I. Tracking changes in wetlandscape properties of the Lake Winnipeg Watershed using Landsat
inundation products (1984-2020). Manuscript in preparation.
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Wetlandscape properties increased 1984-2020 in response to increases in precipitation

@  Wetland number e Lrecipitation (5-yr moving average)
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Spearman’s rank correlation showed precipitation alone could explain more than 70%
of the variations in wetlandscape properties (p < 0.01).




ROOM A: GIS, remote sensing, mapping, and modeling

. Eric Enanga




OBJECTIVE 2. Develop Authoritative Estimates For Rates Of OC Accumulation, GHG
Fluxes To The Atmosphere, And Carbon Transports Into (And Out Of) Wetlands.

2.2 Develop Standards And Protocols To Measure Wetland OC Accumulation And
GHG Flux Rates.

OC stock estimation: Does the method
matter?

CAAF Annual General Meeting, May 1%t 2024

Eric Enanga

Supervisor — Dr. Irena Creed




Equivalent mass vs Depth and *3/Cs 1963 peak OC stock

Method Depth Year Mass
Depth based Fixed Variable Variable
137Cs 1963 peak based Variable Fixed Variable
Equivalent Mass based Variable Variable Fixed
Before compaction After compaction “e.g., tractor tire”

137Cs (Bq kg-l)

— 137Cs (Bq kg 1)
€ 10 - _
< 1963 0
=
=4 —
8 207 . 19631 19 E
Equal sediment mass = Equal OC stock =
}v ______________ -0 8
Equivalent mass L 30

Additional sediment /
mass needed to attain

equal 30 cm depth




Depth, 13/Cs 1963 peak & Equivalent mass OC stock
estimates
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Take home message

All three methods have a role to play in OC stock estimates:
s Depth based method is fast and efficient where the
sampling sites are homogenous with minimal

compaction, excellent for screening large sample sets.

s 137Cs 1963 peak method is useful where, in addition, OC
sequestration rates are important (i.e., time marker).

** Equivalent mass is much more reliable where substantial
compaction is anticipated, e.g., drained sites, although
requires more time investment.




Contributions to Objective 2

2.2 Develop Standards And Protocols To Measure Wetland OC
Accumulation And GHG Flux Rates (April 3, 2023 - April 1, 2024).

We have demonstrated that the Equivalent Mass method is more
reliable for consideration as a potential protocol for OC accumulation
estimation.

2.3 Using Standards And Methodologies Developed In Task 2.2, Measure
Wetland OC Accumulation And GHG Flux Rates (April 1, 2022 - October
15, 2026).

Where substantial compaction is anticipated, equivalent mass should,
in future, be the preferred protocol for calculating OC accumulation
based on the conclusions arrived at in 2.2 above.

1. Creed, I.F., Badiou, P., Enanga, E., Lobb, D.A., Pattison-Williams, J.K., Lloyd-Smith, P., Gloutney, M. (2022). Can restoration of freshwater mineral soil wetlands deliver nature-based climate solutions to agricultural
landscapes? Frontiers in Ecology and Evolution, 10, 932415, doi:10.3389/fev0.2022.932415, 2022.

2. Purbasha, M., Creed, I.F., Trick, C.G., Enanga, E., Lobb, D.A., Submitted. Technical Note: Comparison of radiometric techniques for estimating recent organic carbon sequestration rates in freshwater mineral soil wetlands
3. Ellert B.H., and Bettany J.R. (1995). Calculation of organic matter and nutrients stored in soil under contrasting management regimes. Canadian Journal of Soil Science 75: 529-538, d0i:10.4141/cjss95-075
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Trends in OC stock — Polynomial Orthogonal Contrasts
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ROOM A: GIS, remote sensing, mapping, and modeling
. Shizhou Ma




Objective 2: Develop authoritative estimates for rates of organic carbon accumulation, greenhouse
gas fluxes to the atmosphere, and carbon transports into (and out of) wetlands

Task 2.5: Develop models to predict the potential for wetlands for OC sequestration and GHG reduction

Distal Controls I_Pr;(inTal?JoFtsz -:
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Ma, S., Mistry, P, Badiou, P, Bansal, S., Creed, L.F. Factors regulating the potential for freshwater mineral soil wetlands
to function as natural climate solutions. Wetlands. (submitted)




GIS/remote sensing proxies for proximal controls (inspired from the conceptual diagram)

Proximal controls GIS/remote sensing proxies

Normalized Difference Vegetation Index (NDVI)
>
and Wetland area

Carbon substrate quantity

Carbon substrate quality » Normalized Difference Vegetation Index (NDVI)
Temperature > Temperature - Landsat Thermal Bands
Soil microbial community > Agrlcu%?;(l;;ll;rrll’ger‘llsslggsggrlg;d e
Plant community » Normalized Difference Vegetation Index (NDVI)
Cation exchange capacity > Cation Exchange Capacity (CEC)
Aggregate reactivity > Bulk Density (BD)

Redox potential > Hydroperiod




Response variable for the random forest model - wetland carbon sequestration rate:

* 210 Pb Constant Flux (CF) model derived C sequestration rate
* Varying C sequestration rate available for single wetland at different time intervals

* Total 89 observations across Alberta, Saskatchewan and Manitoba

““Pb specific activity (Bq kg”')
0 20 4 60 80 100 120 140 160

0 i I 1 1 1 Il 1

2017.69-2019.54
2011.24-2015.33
2006.19-2010.71

|
|
Depth (cm orgecm™)

Soil core




Random forest results (prediction made on the entire dataset):
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Random forest partial dependence plot for predictors:
- Functional relationship between predictors and carbon sequestration rate match findings in our review paper
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Next steps

Find better land use data for North America to upgrade “upland” predictors

Apply the process informed RF model to understand how ditferent
environmental factors affect wetland GHG fluxes

Predict and upscale carbon sequestration rate and GHG fluxes to the entire

PPR

Alberta
Saskatchewan

Manitoba

Montana

| Dakota

Nebraska
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WUJECLLIVED

I Obj2,Task 2.4: Estimate Lateral Flows of Carbon
into (and out of) Wetlands

}l{' Obj3,Task 3.1: Develop Mechanistic Models
of Carbon Cycling

57




Objective

Estimating the rates of dissolved organic and
inorganic carbon accumulation and transport to
and from wetlands

Document spatial and temporal variations in DOC
and DIC concentrations in the stream network

4{ Identify causes of such variability

4{ Gain insights into the relationship between
wetlands and DOC/DIC export from the basin
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Study area

,}{gf Canadian side of the Lake Erie
Basin

%{, 10.5% increase in downstream DOC
export relative to terrestrial inputs

,\,{{ DIC export shows 0.5% increase
relative to terrestrial inputs

(Xenopoulos, 2017)

The Great Lakes
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SPARROW (SPAtially Referenced
Regressions On Watershed attributes)

g{ A parsimonious hybrid empirical/process-
based model

%{ Developed by the United States Geological
Survey (USGS)

ﬁl{ Suitable for large spatial scales

4{ Rank contributing catchments based on
the loads and yields

(Smith et al., 1997)




Monitoring

Datas et Stations

PWQMN PWQMN with
without Flow Flow

ECCC with
Flow

Watershed
Delineation

Stream Classes

Water Flow

Data

Land Use

Agriculture Forest

Wetlands Pasture

Urban area Greenhouses

Soil Data

Stream
Network

Hydrologic
Conductivity




Next Steps

Hlp’, Estimating the hydrological connectivity of wetlands and
assessing its influence on DIC/DOC fate

%{ Modeling the carbon cycle in wetlands to comprehend the
behavior of various wetland classes

ﬁl{ Determining wetlands as either sinks or sources of carbon
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Objective

Aims to investigate the impact of farming activities on GHG emissions in a changing climate in Ontario over the past

two decades

Methodoloqy-Data sources

<+ Crop rotation practices from Statistics Canada and A 188 00 3800 80 4 ff %%
OMAFRA databases U 8 reaw fi S0 ¥ éie{l;l:a’z %a

% Identifying agriculture-intensive counties across Ontario ik 50w g e i s ™ - @\ %‘zgg

2 Novel concept of virtual farm is used (for a first time) to o S S :: @ ‘z‘%%

i 50 0 3

quantify GHG emissions

Bt 48 4t wwi ARAAAAAAA
Significance ‘%\}n‘ : : 2 — :2 :
» Provincial and national agricultural strategy to achieve “net e ) :: - PP EARENS
Rooren  WE A ARARAARAA AR ARA

zero-carbon emission”. § Grincom  pf Goat
i g e ARARARAARAAAAA

» Develop nature-based solutions to support carbon-smart

food production systems and be a part of the national An example of a virtual farm

strategy on agri-food sustainability.
Page 2




Agriculture-Intensive Counties

Crop intensive

Huron
Chatham-Kent
Middlesex
Lambton

Perth

oW~

Livestock intensive

Wellington
Perth
Waterloo
Bruce
Kawartha Lake

oW~

0 90 180 360
e K ilom eters

Legend

I Aczriculture-Intensive Counties

2= Chatham -Kent 12= Perth
4= Haldimand 14= Huron

5= Lambton 15= Wellington

6= Middlesex 23= Bnice

11= Waterloo 25= Kawartha L akes

County boundary

e [ in¢ Of 49° N latitude
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H O I Os mOd EI To estimate GHG emissions from farms and test best

management practices to reduce emissions

U Model based on empirical flux estimates
O Primarily based on IPCC Tier 2 (2006) methodology:
modified to reflect Canadian conditions

QO Yearly and seasonal time step

1 Farm-level scale

Indirect

Enteric Fi i ] N.0 from Solls Sail CO, Exchange Emissions
Q) Boundaries of the system are the farm gate _— agriculture.canacia.ca
Uses of Holos model
» Understand, predict and control a food-production i e R
= T e Soil types in selected region
system

» l|dentify areas of deficient knowledge

> Answer various “what if?” scenarios

» Adding value to experiments Camadt

https://agriculture.canada.ca/en/agricultural-production/holos-software-program
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https://agriculture.canada.ca/en/agricultural-production/holos-software-program

Mgco2e

County-wise total GHG emissions

% GHG fluxes from agricultural virtual farms
2001

% Years: 2001, 2006, 2011 and 2016

s Total-farm emission: Crops versus livestock
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1,200,000 -
900.000 -
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()_._._._- — ——— T —— . T s S W . W
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4= Haldimand 12= Perth 25= Kawartha Lakes
5= Lambton 14= Huron

6= Middlesex 15= Wellington
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Enteric CH4
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GHG Flux from
agricultural farms

Year: 2006

(Indirect NoO> Enteric CH4>
Direct N,O > Manure CH, >
Farm energy CO,)
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GHG Flux from
agricultural farms

Year: 2011

(Indirect NoO> Enteric CH4>
Direct N,O > Manure CH, >
Farm energy CO,)

(©)

Agriculture-
intensive
Counties

S
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¥
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f
v
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,//

e
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2353789

Year: 2011
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GHG Flux from
agricultural farms

Year: 2016

(Indirect NoO> Enteric CH4>
Direct N,O > Manure CH, >
Farm energy CO,)

(@

Agriculture-
intensive
Counties

Huron

Lambton

Kawartha  Wellington

Perth

Haldimand  Waterloo

Middlesex

Chatham

Enteric CH4

Manure CH4

Indirect N20

Year: 2016
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Next Steps

(Lake Erie Basin)

O Quantify GHG emissions

in the rest of the counties.

U Explore the role of
wetlands for carbon

sequestration.

U Validate GHG fluxes
derived from the HOLOS

model.

Canada

'Legend

Lake Erie Watershed Area
Wetland in Lake Erie Basin
County Boundary

Google Earth
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Next Steps

(Lake Erie watershed area)

O Quantify GHG emissions

in the rest of the counties.

U Explore the role of
wetlands for carbon

sequestration.

’//Legend

U Validate GHG fluxes ’ s = ‘ [ake Erie Watershed N

. ‘ Wetland in Lake Erie Basin
derived from the HOLOS - County completed (GHG emi)

model. #35 « | County Under Process (GHG Emi)

Google Earth

62m  eys 3k 44201 km
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You

Get in touch!

Email:

ratnajit.saha@mail.utoronto.ca

O30

&
f

[=]E:

Linked-in: www.linkedin.com/in/ratnajit-saha-069922a()

Photo: Peterborough, Ontario (July 2021)

Google Scholar:
hitps://scholar.google.ca/citations?hl=en&tzom=300&user=kQEPsAEAAAAJ &view op=list_ works&sortby=pubdate
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Annexure

o 2020

i Crop  Forest  Greenhouses (nher Agriculture Pasture Urban  Water  Wetland
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roject Objectives

1. Compile ground-based wetland inventories from governmental or non-governmental sources (e.g., DUC

SOLRIS inventory) and reported estimates of uncertainty for these wetland inventories (i.e., minimum

. . mapping size, spatial accuracy, omission/commission errors associated with wetland coverage

Eva]uatg Sat?”lte. based methods of mapping wetlands and Lead: University of Toronto, in methodology, unaccounted wetlands (i.e., those too small to be captured)) are identified.

estimating historical rates (1970 to present) of land use change . .

. . . collaboration with UGuelph & ) ) ) ) ) )

and conversion of wetlands in the Great Lakes-St. Lawrence River 2. Compare ground-based with satellite-based wetland inventories to determine the best available wetland

McGill U mapping methods and to produce a report (see adjacent column) providing the limitations and

Basin. uncertainties associated with both methods.

3. Estimate wetland and landcover change from 1970 to present.

1. Wetlands are mapped using methods tested in Strategy 1. Estimates are provided of historical rates of
conversion of wetlands in the Great Lakes-St. Lawrence River Basin. Wetland loss (or gain) is mapped by
applying a number of statistical analyses, including non-parametric Theil-Sen/Mann-Kendall trend tests, to
each pixel in the SWF image stack. These maps and rates will provide inputs into the next objectives
(strategies).

. . . . . . . . 2.Where wetlands are lost, its follow-on land use and land cover will be classified using pixels drawn from a
Create an inventory of wetlands and identify historical rates (1970 Lead: University of Toronto, in gatified random sample of change types (including strata of no significant change) using very high-

to pl’esent) of land use Change and conversion of wetlands in the collaboration with UGue|ph & resolution reference imagery. By performing this analysis on a stratified random sample, unbiased areal

. . . estimate of follow-on land uses will be produced, which will inform further analysis of socio-economic
Great Lakes-St. Lawrence River Basin. McGill U ) . Y
drivers of wetland change.

3. Estimate changes from 1970 to present in wetland number, size, permanence, perimeter:area ratio, and
perimeter width and distinctness (factors known to influence carbon cycling) are provided at several
assessment unit levels in the Great Lakes-St. Lawrence River Basin, including the Soil Landscapes of Canada
(SLC) soil polygon database, which is currently being used to support the national greenhouse gas (GHG)
inventory. Uncertainties associated with land cover change/wetland conversion rate are estimated.




Proposed workflow

(L:;;ﬂiaigl\g)? SWF time series (1984 - )
) Sample-based change
attribution

(climatic, LULC change)

Historical Change Metrics

Existing Wetland-SWF Change Changes in wetland

inventories (direction, magnitude, characteristics
gradual, abrupt) (P:A, connectivity, etc.)

Current Wetland Extent

Optical/SAR
imagery




Wetlands mapping and inventories

] Fen | Swamp

Figure: Maciej Lizak

2017 CWI + eFRI RCM + PALSAR + S1
. 7 s 3 ;

- ¥ e ; v & 'l-.~

1 Marsh [] Bog [l Open Water [l Forest [[] Vegetated Land [l Barren Land

Identify and evaluate existing datasets:
DUC inventories

ECCC-CWI

Other LULC products

Derive high-confidence cal-val data for wetland (type)
classification

Develop automated classification models using
combinations of optical and (multi-frequency) SAR
data:

- Landsat + Sentinel-2

- Sentinel-1 + ALOS-PALSAR (+ RCM + NISAR)

- Terrain indices




Monitoring surface water dynamics at
sub-pixel scales

actual
30m

pixel grid \A.

Figure: Kathleen Reid

Sub-pixel water
fraction (SWF)

DeVries et al. (2017) Genevieve Ali, Ben DeVries, Wanhong Yang (OMAFRA)




Time Series decomposition

Hypothesis:

Abrupt, semi-permanent
changes in wetland SWF
are likely due to LULC
changes
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CAAF project focused on the Great Lakes-St. Lawrence River Basin
Research objectives related to our work

Objective Activities / Tasks

Task 1.1. Compile ground-based wetland inventories from governmental or non-
governmental sources (e.g., DUC SOLRIS inventory) and reported estimates of uncertainty
Objective 1. Evaluate satellite-based methods of mapping |for these wetland inventories (i.e., minimum mapping size, spatial accuracy,

wetlands and estimating historical rates (1970 to present) omission/commission errors associated with wetland coverage methodology, unaccounted

of land use change and conversion of wetlands in the wetlands (i.e., those too small to be captured)

Great Lakes-St. Lawrence River Basin. Task 1.2. Compare ground-based with satellite-based wetland inventories to determine
the best available wetland mapping methods

Task 1.3. Estimate wetland and landcover change from 1970 to present.

Task 2.1. Provide estimates are provided of historical rates of conversion of wetlands in
the Great Lakes-St. Lawrence River Basin; quantify wetland loss (or gain) by applying a
number of statistical analyses, including non-parametric Theil-Sen/Mann-Kendall trend
tests, to each pixel in the SWF image stack

Objective 2. Create an inventory of wetlands and identify |Task 2.2. Where wetlands are lost, identify follow-on land use and land cover using pixels
historical rates (1970 to present) of land use change and |drawn from a stratified random sample of change types (including strata of no significant

conversion of wetlands in the Great Lakes-St. Lawrence change) using very high-resolution reference imagery.

River Basin Task 2.3. Estimate changes from 1970 to present in wetland number, size, permanence,
perimeter:area ratio, and perimeter width and distinctness (factors known to influence
carbon cycling) at several assessment unit levels in the Great Lakes-St. Lawrence River
Basin, including the Soil Landscapes of Canada (SLC) soil polygon database, which is
currently being used to support the national greenhouse gas (GHG) inventory.




Satellite-based wetland inventories & best mapping methods
Considering additional ancillary data in support of SWF data

U. Of Guelph team Our planned contribution
(Devries et al.) * Consider hydric/drainage status of underlying soil
APRIL 2020 ———n B @) Goal(s):

v’ Assess the likelihood of wetland presence
based on location-specific soil characteristics

* Match SWF map dates with gridded daily climate

SWF (%) _ Google Earth L. . . . .

B (April 2020) data (precipitation, antecedent precipitation,

- potential evapotranspiration, surface soil moisture)
Data sources o Goal(s):

* Stack of Landsat images v’ Differentiate wetlands from swales and non-

* Ancillary data (Digital wetland inundated areas
Elevation Model, Land use v Differentiate surface-water-dominated from
and Land cover map) groundwater-dominated wetlands




Changes from 1970 to present in wetland characteristics
Adding to the list of wetland characteristics

“Traditional” wetland characteristics used to monitor
historical change: wetland number, size, permanence,

perimeter:area ratio

Potential, additional wetland characteristics:
 Wetland permanence standardized by climate
characteristics
o Goal(s): differentiating permanent (or quasi-permanent)
open water in dry versus wet years
 Wetland-to-wetland and wetland-to-stream connectivity
o Goal(s): quantifying historical changes in the frequency
with which surface water flow paths may have facilitate
connectivity between a wetland and nearby water
bodies




Work done to date
January 2024 to now (Postdoc Sarah Ariano, Genevieve Ali)

Unified North American Soil Map (Liu ~ Gridded climate dataset Daymet North America Soil Moisture
etal., 2013) Daily climate data, 1-km resolution, Dataset Derived from Time-
since 1950 Specific Adaptable Machine

Variables: topsoil and subsoil data Variables: dav leneth itati Learning Models
from STATSGO/SSURGO and SLC ariables. day 1ensth, precipitation,
shortwave radiation, SWE, max and

The First Dominant Soil Component Area Percentage . 1 . _ 1
max air temperature, water vapor Varl.able. near-surface soil
pressure moisture (0-5 cm), 250-m

resolution de 250 m, biweekly

between 2002 and 2020

Computations underway for soil hydraulic
parameters using pedotransfer functions
(Saxton & Rawls, 2006)
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Lateral Transfers of soil and
sediment into wetlands
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Fig. 3. 9. Original unsmoothed 1-m DEM of one wetland catchment: (a) three-dimensional (3D) view of the
catchment, (b) colour relief view of the catchment and (c) geometrical characteristics of the sedimentary features for
the shown transect in the colour relief view.
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NATURE BASED SOLUTIONS

ROOM B:

Flux Towers, measurements, and
carbon cycling
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ROOM B: Flux Towers, measurements, and carbon cycling
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OBJECTIVE 2

Develop authoritative estimates for rates of organic
carbon accumulation, greenhouse gas fluxes to the atmosphere, and carbon
transports to (and out of) wetlands to downstream water




DUC Objective 2

Overview of monitoring sites and methodologies

(A

Ducks Urilimited
(Canada




Monitoring GHG emission from freshwater
mineral wetland in agricultural landscapes

Prior to CAAF — 48 sites monitored across PPR (black soil zone / Parklands region) including first
two freshwater mineral wetland Eddy Covariance flux tower sites in the PPR

Through the CAAF we have expanded monitoring to more than 100 wetland sites including:
Brown and Dark Brown soil zone in the PPR (both in AB and SK), expanding to additional sites in
southern AB (2024)
Small restored wetlands in southern Ontario (n = 16)
DUC project wetlands in the BC interior (n = 16)
Deployed 3rd flux tower at Oak Hammock Marsh
Collected cores from 2 MB flux tower sites
Continuing cattail chamber measurements in 2024
Adding ebullition measurements at flux tower sites in 2024
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Cattail Chambers & Floating Chambers
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Ducks Unlimited
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Extensive dissolved gas sampling - Prairies
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Biodiversity Monitoring - Prai_wrni,

S

g 1S

*We collected data with ARUs at all black soil zone wetland sites (n =
48) in 2022 and a subsample of sites (n = 16) in brown and dark
brown soil zones of AB/SK in 2023.

*We can estimate biodiversity indices (species richness/alpha
diversity, evenness, similar) of birds and amphibians at each site to
compare to other ecosystem service metrics.

*Expanding to additional sites spanning a gradient of production
where ARUs are deployed and invertebrate sampling and eDNA
monitoring is occurring
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CAAF - Southwestern Ontario (l)

Ontario Small
Nature Force -
Wetland - i
.. Water Quantity
Water Quality study (ha)
Study (ha) y
n=8 n=8

0.34 £ 0.06 0.19 £ 0.04

0.27 £ 0.04

ON 16
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ROOM B: Flux Towers, measurements, and carbon cycling

. Larry Flanagan (Matthew Bogard)




Establish an eddy flux tower in a new prairie pothole wetland
ecosystem — Stirling Lake (near Lethbridge)

Conduct comparative ecosystem analyses of CO, and CH, fluxes
within the ECCC project and other projects in Alberta - Frank Lake




Highwood
River

Mazeppa
Creek

Blackie
Creek

 Basin2

Frank Lake wetland
% Effluent outflow
A Basin outflow infrastructure
- Basin inlet/outlet
Rivers Basin 3 Basin 3
West East

Outlet to
Little Bow River

Flanagan et al. (2022) Wetlands
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ROOM B: Flux Towers, measurements, and carbon cycling

. Matthew Bogard
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Bogard Lab Updat:
ECCC-CAAF Project Meeting 2024-01-01 | »

izing work led by:
Woodman, Laura Logozzo




1. Rates/dri

Chun Ngai (Eric Camrose Deployed 2 bubble
County traps in 6 wetlands

(2023)

Vol. of gas in bubble
traps measured

Concentration of CH,
in fresh bubbles
determined by GC

Higher aquatic
productivity does NOT
result in higher CH,
flux.

10

CH4 mmol.m-2 d-1
CH4 mmol.m-2 d-1
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2. Scaling emergent veg C stocks and links to emissions sam Woodman, PDF

» Used RGB drone imagery, K-mean clustering to quantify emergent veg.
= Estimated emergent veg. biomass by correlating areal biomass & spectral indices
» Diffusive GHG emissions (CO,/CH,/N,0O) from aquatic habitats.

1. No link b/w veg and CO,/N,O flux.

2. Clear positive link b/w veg and CH, flux.

0.0 0.2 0.4 0.6
Emergent veg. biomass (kg m-)




3. In kind ro'ect: NECB at Frank Lake AB: Laura Logozzo, PDF

: * Scaling C fluxes to
- D entire wetland
NECB = [[jiilfh — complex using
- aquatic
NEP = GPP R, , emissions/lat. Flux
Net Open Water GHG Flux data + biomass
Stream sampling + EC +
Effluent Inflows remote sensing
Sustained aquatic
emissions dominate
NECB due to effluent
processing... A
tradeoff in services!

Outflow




ROOM B: Flux Towers, measurements, and carbon cycling

. Sara Knox




PROJECT UPDATE

Sara Knox*, Pascal Badiou, Lauren Bortolotti, Nick Lee,
Darian Ng, Joyson Ahongshangbam, Zoran Nesic
* Assistant Professor, Department of Geography, McGill

University
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NEW WETLAND SITE IN QUEBEC

(FALL 2024 ORSPRING 2025
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NEW SITE COMING SOON & POTENTIAL SYNERGIES

NECB = AC/At
NECB = nol vos = ned latoral fluxoes
NECB=NEP 47 * Foc ¢ Foor * Froe

LAT-NFS

LAT-NFB 3 MAT-NFS _Fo-joL

LAT-NOB ®cA-sec MALOT
LSP-NMB %
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[ == =i ® EC flux tower == = OOC.

POC, DiC

DOC,
POC, DIC

Environnement,
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COLLABORATIONS WITH DUC

Hogg

» Isolated grassland marsh

* Dominated by emergent vegetation (Tule)

» Characterized by high sulfate concentrations

Young

Isolated cropland marsh

Mix of open water & vegetation(Typha)

Characterized by lower sulfate concentrations




Site ©

Hogg

Young

LARGE DIFFERENCES IN™
WATER QUALITY

 Hogg — higher sulfate,
conductivity, DOC, TDN, and
ABS 280

* Young — higher P & pH




DIFFERENCES IN
GHGFLUXES

Site Year NEE FCH4 GHG
(gC m2 yr1) (gC m2yrl) (gCOeqm2 yrt)
Hogg 2021 -34 1.8 -7

2022 -139 2.5 -349
Young 2021 7.9 674

2022 4.7 276




FCHASPATIAL

HETEROGENEITY

WITHIN AND

BEYOND AFLUX

TOWER FOOTPRINT

Pairing Flux Maps with Landsat 8

Flux Maps

Methane

Landsat 8

Metres
-
5 &

Greenery: 26.4% [ Open Water 70.9%

Darian Ng




OOLNG
POTENTIAL OF
WETLANDS

Spatial Pattern of LST

Satellite RGB image Land surface temperature (°C)

LT (0)

Site: Hogg, cropland marsh — s—m=="" P 2,

Site: Young, grassland marsh e " e e

A Taero (°C)

Difference in Diurnal T,

o
b

%
(\:}
i\

-4 Wetland (Young)
Wetland (Hogg)
—— Wetland (OHM)

-6 i .
0 6 12 18
Hour

Latent heat flux (LE Wlmz)

m

n--n

AT,

aero

type

vary with wetland

Cooler T, during
daytime and warmer in
wetlands

Cooling upto 4.5 ° C (at
noon) and warming upto
2.2 ° C at Young site

Joyson Ahongshangbam




PLANS FORUPCOMING YEAR

» Install new flux tower in QC
« Continue collaboration with DUC
» Publication of papers on the biogeochemical and biophysical benefits of wetlands

POINTS FOR DISCUSSION

« Guidance on lateral flux sampling & water quality data
» Potential collaboration with the QC project

» Integration of data across sites

* Protocols?

10
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THANK YOU

Sara Knox | | https://ubc-micromet.github.io/



mailto:sara.knox@mcgill.ca

ROOM B: Flux Towers, measurements, and carbon cycling

. Christian Von Sperber




ROOM B: Flux Towers, measurements, and carbon cycling

. Gail Chmura




Pl Gail Chmura, McGill University freshwater

With Ph.D. students impoundments
Wendy Ampuero-Reyes & Arunabha Dey | OC in and “out”?

MSc. Student Rachel Plant

Minas Basin ‘;f 3
N —~

Wil OC storage in impoundment sediments

Grand Pre

Summer 2024 mapping vegetation

(5 J— : Summer 2024 beginning GHG flux in

Nova Scotia | % vegetation zones & concentration in water

ATLANTIC 5 \
OCEAN | \
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Google Eartt



 decomposition of soil organic matter, CO, out

* Salt marsh soils contain IC from organisms with (CaCO;) shells

agriculture
crop & pasture lands

ey

.
R
/4 4 "?\\V ¥

Measuring GHG in water
ComparableTechniques?
Water volume vs air volume?
Where produced?

Fate?

d|
|
ol |
|
A

— Comparing IC in flooded & drained soils —

found it can be measured With XRF

“ditches
every ¥“15.5m
OC and IC? out

Google Earth




Related study with
Dr. Florin Pendea
Lakehead U (Orillia)
Lake Simcoe
watershed, ON

winter fluxes critical
CH4 em|SS|ons when water is frozen over seds not




WETLANDS

NATURE BASED SOLUTIONS

ROOM C:

Ecosystem service indicators
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ROOM C: Ecosystem service indicators

. David Aldred




Objective 4, Task 2: Develop a desktop- and indicator-based tool for
rapid assessment of wetland ecosystem services
Irena Creed, David Aldred

In 2013, the Government of Alberta commissioned us to develop a desktop- and indicator-based tool to

implement their no-net-loss of wetland function policy - Alberta Wetland Relative Value Evaluation
Tool (ABWRET)

Relative wetland values were calculated for over 1 million wetlands in 11 relative wetland value
assessment units (RWVAUSs) in the province’s White Area

Creed IF, Aldred DA, Serran JN, Accatino F. Maintaining the Portfolio of Wetland Functions on
Landscapes: A Rapid Evaluation Tool for Estimating Wetland Functions and Values in Alberta,
Canada. In Wetland and Stream Rapid Assessments 2018 Jan 1 (pp. 189-206). Academic Press.
https://doi.org/10.1016/B978-0-12-805091-0.00027-X







Main limitations

(1) variable quality of the wetland database
(a mosaic of different inventories
captured using different data acquired
at different dates and using different
specifications)

(2) varying quality of geospatial indicator
data

Due to these limitations, the Government of
Alberta reports wetland value categories
aggregated to the township level

These are available at:

Percent Wetlands
(Area)

Percent Wetlands
https://geodiscover.alberta.ca/geoportal/rest (Number)

/metadata/item/6074617f4be24fcf95a2de56f6
f7d28f/html




ROOM C: Ecosystem service indicators

. Kevin Erratt




Objective 4. Develop Robust Estimates Of The Synergies (And Conflicts) Of Wetlands As NBS For
Carbon Storage Versus Other Benefits

Task 4.2. Develop A Desktop- And Indicator-Based Tool For Rapid Assessment Of Wetland Ecosystem
Services Related To Hydrological Regulation, Water Purification, And Biodiversity Enhancement.




Evaluating urban wetland health: adjusting management strategies

Shift from physical to visual-based assessments, to create a rapid and cost-effective management tool

Functi [ L Hydrological Water Quality
{ \ 4 \
Subfuncﬁons[ Composition Structure Waterflow Water Storage Filtration Source Bioindicator 10
o~ - s
‘. ‘ ] [ = ] [ ‘ ' C
t Outlet present permanence Oultlet present Algae
probability
Intet present ] [ Soll texture J SO 0.8
) Distance to
| | Percentopen Number of nedraet
) pondedwaw] [ zones ] [ major road 6
<
e
2 06 r=0.93
g p <0.0001
=
i n.a'ss;nm > ;
Distance to 8
Soil texture nearest S 04
pathway B
Distance to o
Indicators nearest
) | residental zone
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Full Indicator ACI

No field assessments, we can go remote




Scaling up: Applying different modelling approaches

*

Predictor Selection

Model Selection/ ACI calculation

Indicator selection

Indicator ranking

Indicator number

Preprocessing
(Spearman Correlation)

Complete Indicator
dataset (n= 27)

A4

Refined Indicator
dataset (n=23)

o
>

Testing/Training

L

Statistical

Statistical

O

EREY

v

Neural Network

Accuracy Assessment
(R2,MSE, UMBRAE) v

Best Model

Aggregation Rules

!

* Each approach is applied to all three wetland functions *

Equal Weight

v

EV Priority

Acl

!

Test human vs. machine knowledge to assess to test whether human assistance can enhance machine learning outcomes




Modelling Approaches : Hybrid wins (in most instances)

6 Indicators 10 Indicators
Machine Hybrid Expert Machine Hybrid Expert
0.53 0.78 0.31 0.71 0.6 0.63
0.25 0.43 0.4 0.38 0.48 0.44
0.29 0.41 0.28 0.42 0.54 0.5




Modelling Approaches: We need human knowledge!

“Human contributions to scientific progress were once deemed to be non-
essential and replaceable” in the realm of artificial intelligence  tansen s quinon (2023) synthese 201.1-21.

However, we show hybrid approaches, which use expert knowledge to “feed”
artificial intelligence enhance outcomes.




ROOM C: Ecosystem service indicators

. Owen Salmon




CAAF Objective 4: “Develop robust estimates of the synergies
(and conflicts) of wetlands as NBS for carbon storage vs. other
benefits”

HYPOTHESIS:

Rising cyanobacteria dominance is related to % wetland
cover in contributing catchments and the associated rise
in DOM-Fe supplied to lakes.

MAJOR FINDING:

Rising cyanobacteria dominance is related to low %
wetland cover and high Fe phosphate delivery to lakes,
causing an increase in cyanobacteria blooms.




Field based study —
Summer 2023

* Lakes (n=108) within Alberta,
Saskatchewan, and Manitoba

e Selected based on % wetland
coverage
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The majority of algal biomass is cyanobacteria

TP drives cyanobacteria, with low N:P ratios (low N
environments) regulating cyanobacteria production

Aphanizomenon, a N-fixing genera, is dominant. This
likely reflects low N conditions
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2) TP drives cyanobacteria, with low N:P ratios (low N
environments) regulating cyanobacteria production

3) Aphanizomenon, a N-fixing genera, is dominant. This
likely reflects low N conditions

4) No grazing effect
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The majority of algal biomass is cyanobacteria

TP drives cyanobacteria, with low N:P ratios (low N
environments) regulating cyanobacteria production

Aphanizomenon, a N-fixing genera, is dominant. This
likely reflects low N conditions

No grazing effect

Terrestrial DOM is fueling cyanobacteria production
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The majority of algal biomass is cyanobacteria

TP drives cyanobacteria, with low N:P ratios (low N
environments) regulating cyanobacteria production

Aphanizomenon, a N-fixing genera, is dominant. This
likely reflects low N conditions

No grazing effect
Terrestrial DOM is fueling cyanobacteria production

Anemic lakes result in high siderophore production
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ROOM C: Ecosystem service indicators

. Sassan Mohammady




CAAF Objective 3, Task: 3.2. Estimate The Hydrological Connectivity Of Wetlands To The Watersheds In Which They Are
Embedded.

Identifying the role of wetland to river connectivity and wetland loss (or gain) on the headwater lake’s
phytoplankton biomass (i.e., as an index of water quality )

PhD Candidate : Sassan Mohammady
Supervisor: Dr. Irena Creed




Hypothesis Study area

Headwater lake catchments of PPR

Wetland loss within lake catchment will increase
phytoplankton biomass in the receiving lake water
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Remote sensing of Chlorophyll-a to create the timeseries of headwater lake’s phytoplankton
biomass (1984-2023)

\ The best model :

Ln Chl-a =-5.382*x + 8.806,

x=Blue band/Green band,
/ R2=0.73, n= 21




Analyzing the correlation between the timeseries of wetland changes with
the timeseries of phytoplankton biomass (i.e., Chl-a)

/ Timeseries of wetland changes \ / Timeseries of lake Chl-a \
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I
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ROOM C: Ecosystem service indicators

. Shabnam Majnooni




Exploring Regime Shifts and Uncovering
Drivers Across Car

Presenter:
Supervisors: Prof. Irena Creed
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Wetland as Natural Solutions:
Baselines and projections for Wetlands on Agricultural Land

Patrick Lloyd-Smith and John K. Pattison-Williams
Ashley Klotz, Liam Boldt and .....
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Overview

Current Status

Plans for Upcoming Season

Challenges




Objectives

* [nitial analysis of the Lake Winnipeg watershed, engaging with Ontario/Quebec and the rest of Canada

Collect data on historical, current, and future wetland extent from natural science teams

Identify and describe the main drivers of wetland conversion (e.g. literature review and/or quantitative assessment)

* Design and implement a survey instrument to explore the economic behavioural perspectives of stakeholders towards wetland management and drainage (e.g.
wetlands as natural, perceived drivers of loss, risk of leakage).

* develop a model that incorporates behaviour to project wetland conversation rates under different scenarios based on economic conditions (e.g. input costs,
commodity prices), technology changes (e.g. drainage costs, yields) and policy instruments (e.g. regulations, payment for ecosystem service schemes).

* Use the developed model and projections to assess the efficiency of various policy instruments

Assess the potential role of ‘leakage’ of wetland associated emissions (i.e., displacement of emissions from avoiding an activity to another location) in the analysis
at the sub-provincial level

* recruitment and initial data collection

€EC€ECLELCELELECECKL




Current Status |

Watershed Analysis & Wetland Extent

| Landcover
M Forest
Cropland
| M Grassland
Wetland
|~ Urban
MBarren

BWater

Relying on David Aldred and team from U of T

UNIVERSITY OF

TORONTO

%4 UNIVERSITY OF

SASKATCHEWAN

UNIVERSITY OF

ARLBERT




Current Status |

Drivers of Conversion: Systematic Review
CStage  DeseriponAdion

1 Google Scholar Wetlands + Conversion + Agriculture
Google Wetlands + Conversion + Drivers
SCOPUS Wetlands + Conversion + Urban Expansion
Science Direct Wetlands + Conversion + Development
Web of Science Wetlands + Conversion + Causes

Wetlands + Conversion + Forestry

Wetlands + Conversion + Canada

2 Title and Abstract Review Document titles and abstracts were reviewed for retention / exclusion

Criteria: includes explicit wetland loss and discussion of conversion
Document Review Documents were read to explore key themes and relevance.

4 Thematic Analysis Key messages, lessons and limitations were identified and synthesized for:
i) context: geographic, grassland type and governance structure (private/public)
ii) driver of conversion
iii) ecosystem service explored

iv) wetland policy structure identified




Current Status |
Preliminary Search Results
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Current Status |
Economic Model Development

* Improve economic modelling of wetland
conservation costs to incorporate uncertainty

* Using precision agriculture data to estimate
the effects of wetlands on crop yields within
the basin itself as well as in the adjacent
buffer areas. Focus is on yield effect
differences across soil zones, wet/dry years,
wetland sizes, and crop types.

UNIVERSITY OF
SASKATCHEWAN




Plans for Upcoming Season

Economic

Modeling Policy Analysis

Administration Survey Design

Leakage
Analysis

UNIVERSITY OF
SASKATCHEWAN




Plans for Upcoming Season |
Survey Design

* Reviewing approaches
* Design summer 2023

* Pre-test Fall 2023
* Implement January 2024

* In-person meeting May 2, 2023 in Toronto




Challenges / Opportunities

* Confirming funding and subgrant agreements

* Hiring / building team
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CAAF Objective 5.4. Support Other National Initiatives For Nature Climate

Solutions.

Wetlands as economically viable nature-based solutions for climate change mitigation
Purbasha Mistry

Supervisors: Drs. Irena Creed and Charles Trick

Study Area
/

55°N

* Evaluated the value of carbon sequestration q
in wetlands by calculating the benefit-cost

ratio of conserving vs. restoring the Lolhind

wetlands

Collection of
sediment cores

45°

1N5°W  110° 105°  100°  95°
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Carbon Sequestration Rate of restored and intact Value of carbon incorporates carbon sequestration

wetlands rate and carbon price of Canada
25 18000 Incorporates CSR of <20
years + >20 years
Incorporates + intact wetlands
SELL CSR of <20
2 = years
= 14000 +>20 years

wetlands

Carbon sequestration rate (Mg ha* yr?)

£ wetlands
=]

g 12000

v

= Incorporates
S 10000 Carbon

o sequestration
S 8000 rate (CSR) of
2 <20 years
©

>

=]

c

a

g

a

<20 YRS >20 YRS INTACT

Age since restoration T =20 YEARS T =40 YEARS T =50 YEARS

Here T refers to time frame, used 3% discount rate, and 2% inflation 185




Comparison of costs and benefits to sequester CO, in wetlands in Alberta in 2021 S CAD

Present value of costs Benefit-cost ratio

> CAD/ha Breakeven cost
( = present
value of
Conservation Restoration carbon) $
| Time periods Conservation Restoration CAD/ha
20 yrs. $2,127 $25,127 2.59 0.22 $5, 504

$3,305 $26,305 3.89 0.49 12, 853

$3,679 $26,679 4.42 0.61 $16,278

The cost of restoring the wetland incorporates restoration cost plus the opportunity cost
Used 3% discount rate and 2% inflation
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1000000

Scaling up

Prairie Pothole Region of Canada 200000 Predicted historical loss
10000
oy
5 1000
A y = 23262x*989
o R2 = 0.9966
Ll 100
10
Total historic (restorable) wetland area X
(ha) 1,738,191 0.1 1 10 100

Total current wetland area (ha) 1,340,654
Wetland area (ha)

Total restoration cost $ CAD
Magnitude of restoration (10%) Magnitude of restoration (50%)
~4.4 billion ~22 billion

Time period
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Key Messages:

 Conservation is more cost-effective than restoration of wetlands

* Incorporating multiple benefits of restored wetlands can help justify the cost

Your feedback to improve this economic analysis approach is much
appreciated.
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Agenda, May 1

. 8:30 — 9:00, Welcome

. 9:00 — 9:30, Introductions

- 9:30 — 10:30, Breakout room (A, B)

. 10:30 — 10:45, Morning Break

. 10:45 - 12:00, Breakout rooms (A, B)
. 12:00 — 1:00, Lunch break

1100 - 230, Breakout rooms (C, D)

. 2:30 — 2:45, Afternoon Break

. 2:45 — 3:30, Breakout rooms (C, D)

- 3:30 — 4:00, From Science to Impact
. 4:00 - 4:30, Final remarks




Rose Fuchsia Room, Topic C Purple Room, Topic D

Topic: Topic:

Ecosystem service indicators Soci .
ocioeconomic Analyses

Objectives:
CAAF, Objective 4
Great Lakes, Objectives 1, 2, 4.5.

Objectives:

CAAF, Objective 5.4.

Prairies: Objective 1 and 2.

Great Lakes: Objectives 3 and 4.

Room leaders:
John Pattison-Williams, Patrick Lloyd-Smith,
Roy Brouwer

Room leaders:

David Aldred, James Paterson




Rose Fuchsia Room, Topic C

Topic:

Ecosystem service indicators

CAAF:

Irena Creed (David Aldred, Kevin Erratt, Sassan
Mohammady, Shabnam Majnooni, Owen
Salmon, Kelechi Nwokeocha)

James Paterson

Lauren Bortolotti

Purple Room, Topic D

Topic:

Socioeconomic Analyses

CAAF:
Irena Creed (Purbasha Mistry*)

Prairies:
John Pattison-Williams (Ashley Klotz)
Patrick Lloyd-Smith

Great Lakes:

Roy Brouwer (Jullian Sone)
Lota Tamini*

Jie He*
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- 9:30 — 10:30, Breakout room (A, B)

. 10:30 — 10:45, Morning Break

. 10:45 - 12:00, Breakout rooms (A, B)
. 12:00 — 1:00, Lunch break

: %— 2:30, Breakout rooms (C, D)
2:30 - 2:45, Afternoon Break

. 2:45 — 3:30, Breakout rooms (C, D)

- 3:30 — 4:00, From Science to Impact
. 4:00 - 4:30, Final remarks
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. 9:00 — 9:30, Introductions

- 9:30 — 10:30, Breakout room (A, B)

. 10:30 — 10:45, Morning Break

. 10:45 - 12:00, Breakout rooms (A, B)
. 12:00 — 1:00, Lunch break

. 1:00 — 2:30, Breakout rooms (C, D)

. 2:30 — 2:45, Afternoon Break

 2:45 - 3:30, Breakout rooms (C, D)

- 3:30 — 4:00, From Science to Impact
. 4:00 - 4:30, Final remarks




How can we better coordinate activities across projects,
objectives, and teams?

What opportunities can we create for students?

What synergies within and between projects objectives can we
explore?

Are we on track to achieve our objectives? What needs to be
done to address the delays? Are you missing data or
information? How can these be provided to you?
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Task 5.1. CANWIN

Establish an open science Canadian Wetland Information repository to support scientists
and decision makers interested in wetlands as nature-based solutions.

Late Start to be mitigated:

« STEP 1. Hiring a Business Analyst (May/Jun 2024)

Will interview AAFC, ECCC, Co-PIs to identify requirements for CANWIN (Databases, datasets,
normalization, user stories, technical and technological requirements)

« STEP 2. Hiring of Full-Stack application Developer (Expected Nov/Dec 2024)

Challenges: Intellectual property, technological, project afterlife, ...




Task 5.2. Wetlands in NIR

Integrate wetlands and their role in OC accumulation and GHG reduction into the
national GHG inventory.

Workshops and collaboration with ECCC AFOLU (Doug MacDonald)
Wetland mapping for PPR from 1993-2020
Estimates of wetland conversion rates 1970 to 2020 delivered to ECCC

Proposal of criteria to classifty wetlands as managed/unmanaged according to land-
proxy approach




Criteria for classifying wetlands as managed or unmanaged in

agricultural landscapes

To report emissions or removals of GHG from lands into the National
Inventory Report, they need to be considered MANAGED or caused by
DIRECT HUMAN ACTIVITY.

Currently, all wetlands in Canada are considered unmanaged. This impedes
the counting of wetlands as nature-based climate change solutions.

Establishing scientific criteria, thresholds, and indicators to distinguish when

a wetland has been managed or nor is required to track emissions/removals
into NIR.




Task 5.3. Wetlands in Holos Model

Develop Approaches To Quantify Agricultural Impacts On Wetland Carbon Storage And Ghg
Emissions To Enable Farmers To Calculate Estimates At The Farm Scale So That They Can Make
Land Decisions That Are Consistent And Quantifiable At The National Scale (Holos).

* FY 3 Collaboration with AAFC (Roland Kroebel,
Sarah Pogue, Shathi Akhter)

Hire postdoctoral fellow to complete literature e
review, and to develop question structure for

wetland inclusion

: . . : A tool to estimate and
 Timeline: Start mid-2024, target 2-year duration reduce GHGs from farms

* Aim for inclusion in Holos V6 release (2026/2027)




Task 5.4. Socioeconomic (Prairies and Great Lakes)

Support Other National Initiatives For Nature Climate Solutions.

Summary of the conclusions from Room D.
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